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Development of new local anesthetic agents has been focused on
the potency of their nerve-blocking effects, duration of action and
safety and has resulted in a substantial number of agents in clinical
use. It is well established and well documented that the nerve
blocking effects of local anesthetics are secondary to their interac-
tion with the Naþ channels thereby blocking nerve membrane
excitability and the generation of action potentials. Accumulating
data suggest however that local anesthetics also posses a wide
range of anti-inflammatory actions through their effects on cells
of the immune system, as well as on other cells, e.g. microorgan-
isms, thrombocytes and erythrocytes. The potent anti-inflamma-
tory properties of local anesthetics, superior in several aspects to
traditional anti-inflammatory agents of the NSAID and steroid
groups and with fewer side-effects, has prompted clinicians to
introduce them in the treatment of various inflammation-related

conditions and diseases. They have proved successful in the treat-
ment of burn injuries, interstitial cystitis, ulcerative proctitis,
arthritis and herpes simplex infections. The detailed mechanisms
of action are not fully understood but seem to involve a reversible
interaction with membrane proteins and lipids thus regulating cell
metabolic activity, migration, exocytosis and phagocytosis.
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‘. . .AN anesthetic is not a special poison for
the nervous system. It anesthetizes all

the cells, benumbing all the tissues, and stopping
temporarily their irritability.’ With these words,
Claude Bernard anticipated already in 1875 (Leçons
sur les anesthésiques et sur l’asphyxie) the fact that
the membrane actions of anesthetics occur in both
excitable and non-excitable membranes (1). Although
most of us relate the use of local anesthetic agents to
their nerve blocking properties, in which capacity they
have served clinicians for over a century, accumulat-
ing data suggest that they also posses a wide range of
other effects related to their membrane actions and
equally interesting from a clinical perspective. The
purpose of this review is to summarize the effects of
local anesthetics on non-nervous tissue, particularly in
connection with tissue damage and inflammation,
and to discuss their mechanisms of action as well as
present and future clinical implications.

General aspects on inflammation

Inflammation has been described as ‘the stereo-
typed response of vascularized tissue to injury of

any kind’ (2) and ‘a localized protective response
elicited by injury or destruction of tissues, which
serves to destroy, dilute, or wall off both the injur-
ious agent and the injured tissue’ (3). The process
may be triggered by neuronal stimuli, foreign
agents and tissue damage, which will set off a cas-
cade of cellular and humoral factors aimed at tissue
defense, repair and restoration. However, in certain
situations the inflammatory response tends to
become ‘over reactive’ and harmful, causing tissue
destruction and reduced function (4). Inflammatory
signs have pathophysiological correlates charac-
terised by a dilatation of arterioles, capillaries and
venules inducing rubor (redness/erythema) and
calor (heat). The early extravasation of plasma
through the capillaries and post-capillary venules
(5) will give rise to tissue swelling, tumor, and after
a while pain, dolor, and functional disturbances,
functio laesa. These changes correlate well with the
production and release of proinflammatory sub-
stances in the inflamed tissues, many of which ori-
ginate from the cells of the innate and adaptive
immune systems, i.e. the granulocytes, monocytes,
macrophages and lymphocytes (6). The cells of the
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innate immune system are produced in large num-
bers when required and then released into the cir-
culation. Upon reaching the endothelium affected
by inflammation, the leukocytes marginate and
slow down, ‘roll’, along the vascular lining, a pro-
cess generally involving activation of selectins,
integrins and ligands on the surface of leukocytes
and the endothelium (Figs 1 and 2) (6, 7). Being a
reversible event, rolling must be replaced by a
strong adhesion of the leukocyte to the endothe-
lium, a prerequisite for successful migration out of
the bloodstream. In the process of firm adhesion, the
leukocyte is stimulated by chemokines produced by
the endothelial cells, increasing its activity of integ-
rins, which brings about a tight adhesion of the
leukocyte onto integrin ligands on the endothelial
cell surfaces, i.e. intercellular adhesion molecule
(ICAM-1) and vascular cell adhesion molecule
(VCAM) (Fig. 1) (6—8). Some chemokines are consti-
tutively produced but most are synthesized in
response to agents or mediators such as bacterial
endotoxins or primary inflammatory cytokines
(e.g. lipopolysaccharide, TNF-a, inerleukin-1, mono-
cyte chemotactic proteins, macrophage inflammatory

proteins) with pronounced specificity as to re-
cruitment of different subsets of leukocytes. Once
the process of adhesion has been finalized, transen-
dothelial leukocyte migration, diapedesis, starts
(Fig. 2). The leukocytes begin to leave the blood-
stream by passing through interendothelial junc-
tions as a result of chemotactic stimulation and
active interaction with molecules localized at the
junctions, which open up for transmigration (2, 6).
The subsequent movement of leukocytes in the
extracellular matrix towards the inflammatory
sites, chemotaxis, is further influenced by the com-
bined actions of proinflammatory agents on the che-
mokine and cytokine receptors of the leukocytes, to
a substantial degree produced by leukocytes having
arrived earlier to the site of inflammation (Fig. 2)
(9, 10). The mechanisms behind the chemotactic
cell movements involve release of various chemo-
tactic substances, such as leukotrien B4 (LTB4)
(11), interleukin-1 (IL-1) (12), IL-8 (CXCL8) (13)
and substance P (14), which stimulate chemoattrac-
tant receptors coupled to G-proteins influencing in
turn the actin cytoskeleton of the leukocyte and
its movements (15, 16). The stimuli also prime
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Fig. 1. Adhesion of leukocytes to the vascular endothelium is a prerequisite for succesful migration of immune cells from the blood stream to
the injured/inflamed tissue. The process of adhesion involves release of chemokines from endothelial cells at inflammatory sites and a
subsequent activation of integrins and adhesion molecules on leukocytes and endothelial cells. Numbers in parentheses () represent
references showing an inhibitory effect by local anesthetics on specific molecules or processes. TNF, tumor necrosis factor; IL, interleukin;
MIP, macrophage inflammatory protein.
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leukocytes to their phagocytic function and release
of lysosomal enzymes, free radicals and various
inflammatory mediators, aiming at the destruction,
dilution, and digestion of both the injurious agents
and the injured tissues and the subsequent restora-
tion of tissue function and wound healing (Fig. 2).

Effects of local anesthetics on various
steps of the inflammatory cascade

Leukocyte adhesion
Having arrived at the site of inflammation via the
circulation, the leukocytes undergo the multi-step
adhesion process described above and aimed at
transferring the immune cells from the bloodstream
to the tissues.

Several in vitro and in vivo studies have shown that
local anesthetics dose-dependently and reversibly
inhibit leukocyte adhesion to synthetic materials
(17—20) and to blood vessel walls (Figs 1 and 2) (21—26).

Using blood samples from patients receiving lido-
caine infusions to treat arrhythmias, the authors
found significantly reduced granulocyte adherence,
suggesting that this inhibition can occur at plasma
concentrations normally seen in clinical practice (24).

Several mechanisms accounting for the suppres-
sion by local anesthetics of leukocyte adherence to
endothelial cells have been proposed. Sodium chan-
nels responsible for the nerve blocking actions of
local anesthetics were ruled out because another
potent blocker of sodium conductance, tetrodotoxin,
lacked effect on leukocyte adhesion (27). Local anes-
thetic-induced release of prostacyclin from the
endothelium could constitute part of the mechanism
as both lidocaine and prostacyclin, when applied
locally, can cause release of leukocytes previously
firmly adherent to vascular endothelium (28).
Recent studies have suggested that local anesthetics
inhibit leukocyte adhesion to the endothelium by
interfering with the actions of integrins (29—31) and
leukocyte adhesion molecule-1 (29, 32) (Fig. 1).
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Fig. 2. Tissue injury will set off release of proinflammatory and chemotactic agents which will activate selectins, integrins and ligands in the
area of inflammation leading to a slowing down of circulating leukocytes along the endothelium (rolling) followed by adhesion, extravasation and
migration towards the injured/infected tissue area where immune cells are activated to initiate the process of phagocytosis of foreign agents and
the release of various inflammatory mediators. Numbers in parentheses () represent references showing inhibitory effect by local anesthetics on
specific process. PG, prostaglandin; TX, thromboxane; LT, leukotrien; 15-HPTE, 15-hydroperoxyeicosatetraenoic acid.
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Leukocyte migration
The endothelium, which in the resting state forms an
effective barrier to the passage of cells from the cir-
culation and into the surrounding tissues, undergoes
a dramatic permeability transformation during an
inflammatory response and becomes the main gate-
way for the exit of blood constituents and fluid. This
transformation is preceded by changes in the adhe-
sive properties of the endothelium, which is nor-
mally non-adherent to the cellular components of
the bloodstream, allowing blood-borne leukocytes
to adhere and subsequently begin the process of
diapedesis in which the leukocyte extends itself by
a pseudopod through small gaps in the junctions
between apposing endothelial cells (6), a process
requiring disassembly of the cytoskeleton on the api-
cal surface and reassembly on the abluminal side of
the endothelium (2) (Fig. 2).

Several studies have confirmed the dose-dependent
inhibition of normal random motility of leukocytes
both in vitro and in vivo by a wide range of local
anesthetic agents (17, 33—38) (Fig. 2). This inhibition
is reversible in nature and without interference with
cell viability (36). The concentrations of local anes-
thetics required to induce inhibition of leukocyte loco-
motion are in the range normally achieved in clinical
practice as suggested by an in vivo study showing that
the delivery of granulocytes into peritonitis exudates
was markedly inhibited by intravenous lidocaine infu-
sions (24). Similarly, lidocaine was shown to inhibit
the migration of leukocytes into synovial fluid in crys-
tal-induced arthritis in dogs in vivo (39) as well as the
infiltration of granulocytes into the tissue in experi-
mental colitis in rats in vivo after subcutaneous or
intrarectal administration of lidocaine (40). Several
investigators have linked the inhibitory actions of
local anesthetics on leukocyte mobility to their effects
on the cytoskeleton (41—47) which have also been
confirmed in a variety of other cell types, such as
keratinocytes, erythrocytes, platelets, muscle cells,
fibroblasts, nerve cells and tumor cells, also confirm-
ing the reversible nature of the inhibition. Another,
indirect route, by which local anesthetics may
interfere with leukocyte mobility, is by attenuating
the release of chemoattracting agents from leukocytes
(38, 48).

Activation and priming
Neutrophils are activated and primed by a variety of
endogenous and exogenous agents, such as bacterial
lipopolysaccharide (LPS), granulocyte/macrophage
stimulating factor, tumor necrosis factor (TNF-a), IL-

8 and platelet aggregating factor (PAF) (49, 50). The
priming process is aimed at significantly boosting the
activation of neutrophils and their release of tissue
toxic mediators, such as superoxide anions (51) and
lipid mediators (52), thereby improving the immune
systems ability to take out agents that have previously
been identified by the system (49). Local anesthetics
may interfere with the priming process by inhibition
of protein kinase C (PKC)/phospholipase C (PLC)
(Fig. 3) (50, 53), probably within the Gq-coupled sig-
naling pathway (50). The effects of local anesthetics
may also involve inhibition of phospholipase D (PLD)
(54), which plays an important role in the regula-
tion of leukocyte functions of phagocytosis, de-
granulation and oxidant production. The actions of
local anesthetics on PLD could be either by prevent-
ing the membrane translocation of PLD-activating
factors and/or by direct inhibition of the enzyme
(54).

Phagocytosis
Phagocytosis is the principal way by which neutro-
phils execute the destruction of invading microor-
ganisms as well as the ingestion of over-aged cells
and cellular debris. Particle internalization is initiated
by the interaction of specific receptors on the surface
of the phagocyte with ligands on the surface of the
particle. This leads to the polymerization of actin at
the site of ingestion, and the internalization of the
particle via an actin-based mechanism involving the
formation of a phagocytic cup culminating in the
formation of the mature phagolysosome. Because
endosome/lysosome trafficking occurs primarily in
association with microtubules, phagosome matura-
tion requires the coordinated interaction of the
actin- and tubulin-based cytoskeletons (55).

Local anesthetics induce a dose-dependent and
reversible inhibition of granulocyte phagocytosis
(Fig. 2) (18, 56, 57). Systemic intravenous adminis-
trations of lidocaine in doses recommended for anti-
arrhythmic treatment (39) significantly reduced
phagocytic activity of leukocytes sampled from
the synovial fluid of knee joints with synovitis.
Surprisingly, the novel local anesthetic ropivacaine
was reported to exert weak or no effects on granu-
locyte phagocytic activity (53, 58), as opposed to
other local anesthetic agents. The currently most
plausible mechanism to account for the inhibition
induced by local anesthetics on leukocyte phagocy-
tic activity is by impairment of leukocyte surface
receptor expression (59) and inhibition of actomyo-
sin filament activity (60).
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Effects of local anesthetics on synthesis
and release of inflammatory mediators

Eicosanoids
Release of arachidonic acid from membrane
phospholipids by the action of the enzyme
phospholipase A2 (PLA2) and its oxygenation by the
enzymes cyclooxygenase and lipoxygenase to gener-
ate bioactive eicosanoids represent an important ser-
ies of events that is thought to play a pivotal role, both
in the regulation of physiologic organ function and
pathologic responses to tissue damage (61). Several
local anesthetics have been shown to interact in a dual
fashion with PLA2 (Fig. 3) as suggested by results
showing that low concentrations of the agents
induced a slight stimulation of PLA2 activity, while
higher concentrations inhibited the enzyme (62).
Other investigators showed that some local anesthetic
agents (procaine and lidocaine) were able to inhibit
pancreatic PLA2 at a very low surface concentration,
while other local anesthetics (tetracaine, butacaine
and dibucaine) required rather high concentrations

(63). The authors suggested that a correlation exists
between the nerve-blocking potencies of the agents
and the inhibition of PLA2 (64).

Prostaglandins
Early in vitro studies have shown several local anes-
thetics too possess inhibitory effects on spontaneous
prostaglandin biosynthesis (65, 66), an inhibition
that increases with lower pH, suggesting an action
primarily by the ionized forms of the agents (62).
Lidocaine administration significantly inhibited
prostanoid (PGI2/6-keto-PGF1-a) release from incu-
bates of human gastric mucosa (67) as well as pros-
tanoid biosynthesis in response to experimental
damage (68, 69) (Fig. 3). A significant inhibition of
PGF2a release into the circulation was seen during
systemic administration of lidocaine in dogs with
cardiac arrhythmias (70). In a recent study using a
technique allowing for the in vivo analysis of inflam-
matory mediators released post-burn (71), a potent
inhibition of PGE1 and PGE2 release was
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Fig. 3. The arachidonic acid cascade plays a major role in the inflammatory processes taking place in the sequel of a tissue injury. Local
anesthetics have been shown to induce inhibition (references in parentheses) at various steps in the cascade.
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demonstrated when treating the burned skin in the
intact animal with a topical local anesthetic cream
(71), thus confirming an earlier report showing
reduced PGE release from isolated pieces of gastric
mucosa by lidocaine (67) (Fig. 3). These inhibitory
effects on PGE, known to play a significant role in
the mechanisms responsible for inflammatory pain,
could account for some of the potent analgesic
effects of intravenous lidocaine reported in burn
patients (72, 73) and in patients having undergone
surgery (74).

Thromboxanes
Several in vivo and in vitro studies revealed that the
local anesthetics significantly inhibited thrombox-
ane B2 (TXB2) release (Fig. 3) (67, 69, 75). In a
study investigating the effect of bupivacaine on the
coagulation of human whole blood, the authors
were able to demonstrate that the agent prolonged
clotting time in clinically relevant concentrations
and that this effect, at least in part, was mediated
by inhibition of TXA2 signaling (76). Others con-
firmed the inhibitory effect of lidocaine, ropivacaine
and bupivacaine on TXA2-induced platelet aggrega-
tion, although higher doses of the local anesthetic
agents were required (77). The inhibitory effects of
local anesthetics on thromboxane synthesis prob-
ably contribute to their suppressive effects on plate-
let aggregation (76) and the reduced incidence of
deep venous thrombosis (78).

Leukotrienes
Local anesthetics have been shown to induce inhibi-
tion of LTB4 release from activated human granulo-
cytes and monocytes (Fig. 3) (79, 80). In a recent in
vivo study, topical administration of lidocaine-
prilocaine cream induced a pronounced inhibition
of LTB4 release from a full-thickness burn injury of
rat skin (75). Because leukotriens have been shown to
play an important role in the promotion of inflam-
mation-induced plasma extravasation (81), the above
effects of local anesthetics on leukotrien synthesis
could be part of their inhibitory effects on edema for-
mation in various inflammatory conditions (82—84).

Histamine
Histamine is synthesized and released by human
basophils, mast cells, and neutrophils. Increasing
evidence suggest that, in addition to exerting
immediate vascular and bronchial responses, hista-
mine might modulate the immune reaction by inter-
acting with T cells, macrophages, basophils,
eosinophils, and monocytes (85).

Histamine release from mast cells is effectively
and dose-dependently inhibited by lidocaine at con-
centrations below those used for infiltration
anesthesia (Fig. 4) (86). In agreement, latter investi-
gators showed that low concentrations of lidocaine
or mepivacaine induced a potent inhibition of hista-
mine release from activated mast cells and that this
inhibition increased with higher pH of the medium
suggesting it to be primarily mediated by the non-
ionized molecules of the local anesthetic agents (87).

Oxygen free radical production
When neutrophils arrive at the site of inflammation,
they phagocyte and degrade substances such as
bacteria, pathogens, and remnants of damaged tis-
sue. The degradation process is the result of both
oxygen-independent mechanisms, which digests
bacterial proteins by the action of the enzyme elas-
tase, and oxygen-dependent mechanisms requiring
the presence of superoxide anions (88—90).

The inhibition of leukocyte metabolic activity and
superoxide anion formation by local anesthetics has
been convincingly documented over the years
(Fig. 4) (26, 29, 35, 36, 50, 56, 58, 59, 79, 91—100)
and shown in several studies to be dose-dependent
(34, 56, 98, 101, 102) as shown in clinical studies
involving patients with coronary artery disease
(103) and diabetes (104) and treated with intrave-
nous lidocaine infusions.

The direct scavenging effects of local anesthetics
have been attributed to various mechanisms of
action. There is evidence to suggest that once local
anesthetics penetrate into the cell membranes, they
interact with membrane lipids and proteins to
quench oxygen and nitroxide free radical formation
(105) or interfere with the Ca2þ-induced increase in
mitochondrial radical formation (53, 106).

Cytokines
Cytokines produced by the cells of the innate immune
system can profoundly influence various steps of the
inflammatory response, e.g. phagocytosis, chemotaxis
and oxidative metabolic activity (107).

The release of IL-1 by activated human monocytes
was dose-dependently inhibited by lidocaine and
bupivacaine (Fig. 4) (79). In a study investigating
the release of inflammatory mediators after acute
lung injury induced by hyperoxia, pre-treatment
with an intravenous lidocaine infusion in clinically
relevant concentrations, significantly attenuated the
release of cytokines (IL-1b, TNF-a) from the injured
lung along with reduced influx and metabolic acti-
vation of neutrophils (Fig. 4) (108). Several local
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anesthetics (lidocaine, bupivacaine, amethocaine)
have been shown to dose-dependently inhibit both
the spontaneous and the TNF-a-induced secretion
of IL-8 and IL-1b (Fig. 4), whereas lidocaine also
proved stimulatory on the secretion of the anti-
inflammatory molecule IL-1 RA. The authors
ascribed both the inhibitory and stimulatory effects
of lidocaine to a possible effect on the regulation of
transcription (109). The possible role of local anes-
thetic agents on cytokine-induced vascular cell
injury was recently presented in a study investigat-
ing, by use of trypan blue exclusion and lactate
dehydrogenase (LDH) release, the survival of rat
vascular smooth muscle cells and human

microvascular endothelial cells exposed to cytokines
(IL-1b, TNF-a, interferon-g) and pre-treated with
lidocaine or tetracaine. Lidocaine, but not tetracaine,
was shown to attenuate cytokine-induced cell injury
and increase cell survival in both cell types in a
dose-dependent manner (110).

Lysosomal enzymes
Granule exocytosis by immune competent cells is a
complex process involving membrane signaling that
includes Ca2þ influx and activation of protein kinase
C, fusion of lysosomal vesicles with cell membrane
and subsequent release of lytic contents at the site of
contact with intruder. This process is, at least in
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Fig. 4. The extravasation and migration of immune cells from the circulation into the area of injury is followed by activation and release of a
large number of potent mediators. The figure illustrates inhibition (X) by local anesthetics of immune cell release of mediators. TNF, tumor
necrosis factor; IL, interleukin.
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part, dependent on a functional actin cytoskeleton
(111). Several authors were able to demonstrate a
dose-dependent inhibition by local anesthetics of
the release of lysosomal enzymes, from activated
polymorphonuclear leukocytes (Fig. 4) (35, 91, 92,
103). This inhibition is reversible and dose-depen-
dent (60) and most probably mediated by inhibition
of the actin microfilaments, being the prerequisite
for the fusion between lysosomal vesicles and the
cell membrane (91).

Effects on vascular hyperpermeability
and edema formation

Local anesthetics have been shown to be potent
inhibitors of inflammation-induced edema forma-
tion in various conditions. A pronounced inflamma-
tion has been shown to take place in the wall of the
obstructed small intestine and to be the primary
cause for the profuse fluid losses seen with this
condition (112). Lidocaine aerosol (20 mg) applied
on the serosal surface of the obstructed gut induced
a marked inhibition of fluid losses into the intestinal
lumen parallel to reduced edema in the gut wall
(113). Topical application of lidocaine-prilocaine
cream on the burned skin, reduced plasma extrava-
sation to the level of non-burned control animals
(114, 115), whereas intravenous lidocaine infusions
proved less potent (116). After exposing the colonic
peritoneum to hydrochloric acid in vivo and subse-
quently treating it topically with lidocaine or bupi-
vacaine, the resulting edema was significantly
inhibited as compared with saline-treated controls
(82). Capsaicin-induced extravasation of dextran in
the lower airways of guinea-pigs was effectively
reduced by topical lidocaine pre-treatment, whereas
the mucosal blood flow was unaffected suggesting
an action directly on the permeability-regulating
endothelial cells rather than on flow regulating
pre-capillary resistance vessels (117, 118).

The effects of the local anesthetics on inflammation-
induced capillary hyperpermeability could be related
to a number of their actions, such as reduced release of
histamine from macrophages (86), inhibition of LTB4,

cytokines, and oxidant release from activated granulo-
cytes (79), increased synthesis of prostacyclin (119) and
inhibition of the endothelial cell cytoskeleton (120).

Inflammation-related effects

Lung injury
Neutrophils are thought to play a pivotal role in the
pathogenesis of lung injury through the release of

free radicals, proteases and lysosomal enzymes.
This has attracted investigators to test the potential
effects of local anesthetics in the treatment of lung
injury. Several local anesthetics have been shown to
diminish thiourea-induced lung injury in rats as
shown by reduced extravasation of radiolabeled
protein (121). Similar observations were obtained
in reperfused rat lungs, showing that the local anes-
thetics inhibited lung edema parallel to reduced
synthesis of cyclooxygenase products, normally ele-
vated during reperfusion (122). Pre-treatment of
Escherichia coli endotoxin-induced lung injury with
an intravenous infusion of lidocaine (2 mg/kg/min)
significantly attenuated lung edema, leukocyte
counts and the release of various inflammatory
mediators (84, 123). In a study in dogs investigating
the effect of lidocaine on the allotransplanted lung,
authors showed significantly improved gas
exchange paralleled by reduced leukocytes and
myeloperoxidase in bronchoalveolar fluid (30).
Lidocaine infusion in a clinically relevant concentra-
tion was further shown to have a prophylactic effect
on hyperoxic lung injury as shown by reduced lung
edema and tissue biochemical and histopathological
changes (108). Similar results were obtained in a
study investigating HCl-induced lung injury in rab-
bits and showed reduced morphologic and histologic
damage in the lidocaine-treated group (124). Acute
severe pancreatitis is often associated with acute lung
injury possibly by the action of pancreatic enzymes.
In a study investigating the effect of pre-treatment of
pancreatic enzyme-induced lung injury with lido-
caine, the author reported an attenuation of lung
injury (125). In bleomycin-induced acute lung injury,
lidocaine was able to inhibit the granulocyte colony-
induced exacerbation of lung injury and the subse-
quent lung fibrosis (126). Moreover, lidocaine in a
dose of 5 mg/kg significantly attenuated lung
edema in the isolated post-ischemic rat lung (127)
and significantly reduced HCl-induced acute lung
injury when added to the surfactant fluid (128).

Septic shock
In a series of experiments, Fletcher and collaborators
studied the effect of lidocaine treatment in different
shock models. Intravenous lidocaine infusion at
1 mg/kg/min starting before and lasting 2 h after
E. coli-induced endotoxin shock, significantly
improved survival in dogs (129) and baboons (130,
131), despite that no significant effects on hemody-
namic parameters were noticed. The beneficial effects
of lidocaine were proposed by the authors to be in
part mediated by the agent’s effects on eicosanoid
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synthesis (132). In a recent study in endotoxemic rats,
lidocaine infusion (2 mg/kg/min) was also able to
attenuate leukocyte-endothelial adhesion, capillary
extravasation (25) and sepsis-induced diaphrag-
matic dysfunction in hamsters (133). In contrast,
lidocaine failed to improve survival
when administered as a bolus injection after
E. coli-induced septic shock in rats (134). Lidocaine
was also shown to increase the severity of hypogly-
cemia and lactic acidosis, although it improved glu-
cose utilization and hepatic pyruvate extraction in
septic pigs receiving a continuous intravenous infu-
sion at 2 mg/kg/min (135, 136). In another study
investigating the effects of lidocaine infusion (6 mg/
kg/min) on septic shock in dogs, the authors
reported that lidocaine did not alter hemodynamic
variables but induced metabolic acidosis and
hypoalbuminemia (137).

Myocardial ischemia
Lidocaine and related local anesthetic agents have
been shown to protect against myocardial injury asso-
ciated with permanent regional ischemia (138, 139),
and global (140) or regional ischemia-reperfusion
(141—143). Lidocaine also proved beneficial in redu-
cing the size of a myocardial infarction when com-
bined with adenosine treatment (144) or when given
alone (145). The beneficial effects of lidocaine could be
mediated by the inhibitory effects of the agents on
leukocyte recruitment and activation, since mycordial
ischemia, and particularly reperfusion injury, is asso-
ciated with increased neutrophil recruitment and pro-
duction of free radicals (146). Moreover, agents
attenuating leukocyte accumulation have been
shown to reduce infarction size (147). In support,
lidocaine has been reported to reduce the release of
lipid peroxidation products from ischemic-reperfused
myocardium (141) and to prevent ion movements
associated with tissue damage (140).

Antimicrobial effects

Antibacterial effects
As early as the beginning of this century, several of
the local anesthetics used for spinal anesthesia (sto-
vaine, tropacocaine, novocaine) were proposed to
possess antibacterial activity (148). Ensuing studies
have revealed significant variations in the potency
and range of bacterial strains inhibited by the
agents, significant dose and structure-dependent
differences, pH and temperature variations, as well
as differences between individual studies using the
same agents (149). In the following, the most

significant findings and contradictions will be pre-
sented. The observations made by Jonnesco (148)
were followed by a number of reports showing
that local anesthetics used in ophthalmologic prac-
tice inhibited conjunctival flora (150—154). The
wide-spectrum antimicrobial actions of most local
anesthetics have since been documented by a sig-
nificant number of publications (58, 153, 155—159,
160—169, 170—179). A number of key references and
their effects have been summarized in Table 1.

Accumulating data clearly show that the antimicro-
bial potency of local anesthetics is primarily related
to the concentration of the agent and to a lesser
extent to its structure as most local anesthetics, both
ester and amide type, can subdue most bacteria in
high enough concentrations (180). However, one
exception to the rule has emerged, namely ropiva-
caine. This solitary pure enantiomer (S-form), which
has been proven to have weak or no antibacterial
actions in clinical concentrations (181—183), has trig-
gered a discussion of whether its use may increase
the risk of inadvertent intravascular or intrathecal
infections (184, 185). Because ropivacaine also has
been proven to be a poor inhibitor of the immune
response of granulocytes to foreign agents (58),
including bacteria, one could argue that this may
compensate for the lack of direct antibacterial effects.
Whether these properties of ropivacaine do represent
an increased risk for the patient or not will emerge
from additional studies addressing the current issue.
What is obvious at this stage is that the antibacterial
effects of local anesthetics not only depend on the
length of the alkyl chain (—CH3) (186), but also on the
racemic configuration of the agents with higher
potency for the R-isomer over the levoform (187)
and poor effects by the S-enantiomer.

The precise antibacterial mechanisms of action are
still unclear, but could be related to the interaction
of local anesthetics with the bacterial wall (163) or
with macromolecules at the cellular surface of bac-
teria (188). Such electrostatic interactions between
cationic local anesthetics and anionic membrane
components could induce functional changes by
alteration of membrane proteins (189, 190) and by
reducing membrane fluidity (191). As a result, var-
ious membrane and cell functions (192), such as
membrane-bound ATPase activity (193) and the
DNA binding properties of the cell (194) may be
inhibited. Interestingly, local anesthetics were also
reported to potentiate the sporocidal activity of
other agents (174) and to enhance the MIC values
of several antibiotics up to 10-fold in concentrations
lower than those used clinically (195).
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Antiviral effects
In an early study investigating the effects of several
local anesthetics (dibucaine, tetracaine, cocaine,
lidocaine, and procaine) on bovine kidney cell
fusion induced by the herpes simplex virus, the
authors reported that all local anesthetic agents
induced a significant inhibition of cell fusion in
physiologically relevant concentrations and without
impairing virus replication. The authors proposed
that the local anesthetics exert this inhibition by
occupying sites within the plasma membrane,
which must be vacant in order for virus-induced
membrane fusion to occur (196). In another study
(120), the authors suggested that the cell fusion
induced by viral infection was related to digestion
of the cell surface coat by lysosomal enzymes, and
that inhibition of ATPase would prevent fusion. Free
radicals have also been shown to play a role in viral
cytopathicity as suggested by results showing that
the scavenger superoxide dismutase (SOD) was able
to protect mice from the lethal influenza virus (197).
These infective mechanisms could account for some
of the antiviral effects of local anesthetics, as the
agents possess the ability to inhibit membrane
ATPase (198) as well as the release of lysozymes
(35) and free radicals (58). In a study investigating
the mechanisms behind local anesthetic-induced

inhibition of cell infection caused by vesicular sto-
matitis virus and other viruses (199), the authors
showed the inhibition to take place prior to both
primary and secondary RNA transcription but fol-
lowing transfer from the cell surface to an intracel-
lular site, presumably the lysosomes. In a double-
blind, placebo-controlled crossover study in patients
with verified herpes simplex virus (HSV-1 and
HSV-2), administration of a topical local anesthetic
cream (lidocaine/prilocaine) in the prodromal
stages of the infection resulted in 50% abortion of
eruptions and significantly reduced the duration of
subjective symptoms and eruptions (200). In accor-
dance, the infectivity of HSV-1 was markedly
reduced by treating virions with local anesthetics
(lidocaine, dibucaine and tetracaine), possibly by
interaction with the physicochemical properties of
the virus envelope (201) or by inhibition of viral
replication, although this effect was largely depen-
dent on the presence of epinephrine (202).

Antifungal effects
Several local anesthetic agents, including lidocaine,
tetracaine, prilocaine and procaine, have been
shown to inhibit the growth of Candida albicans
(151, 169). In a recent study investigating the effect
of lidocaine and bupivacaine on 20 Candida strains,

Table 1

Summary of the most important inhibitory actions of local anesthetics on various strains of bacteria

Bacterial strain Local anesthetic Concentration Reference

Pseudomonas aeruginosa Tetracaine 0.5% 152
Lidocaine 0.25—1% 168
Procaine 0.5%, 0.25% 155
Tetracaine 0.5%, 0.25% 155
Cocaine 4% 155
Lidocaine 4% 183

E. coli Bupivacaine 0.5% 165, 180
Lidocaine 1%, 2% 181

S. aureus Lidocaine 4% 183
Bupivacaine, ropivacaine 57
Bupivacaine 0.5% 165
Lidocaine 2% 169
Various 159—161, 170—172

H. influenzae Lidocaine 4% 183
Various 162, 163

M. tuberculosis Various 159—161, 164
S. pneumoniae Lidocaine 4% 183

Various 173

S. epidermidis Bupivacaine 0.5% 165

Campylobacter pylori Benzocaine 179

Chlamydia trachomatis Various 175, 176
Neisseria gonorrhoeae

For additional details see review by Batai et al. (149).
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lower concentrations of the agents were found to
have fungistatic effects due to yeast metabolic
impairment, while higher concentrations were fun-
gicidal, due to direct damage to the cytoplasmic
membrane (203). The inhibitory effects of lidocaine,
bupivacaine and ropivacaine on germ tube forma-
tion by C. albicans were suggested to be dose-
dependent but not pH-dependent and secondary
to blockade of ionic channels, particularly calcium
channels (204). Structure-related differences were
demonstrated in a study showing ropivacaine to
lack antifungal effects on C. albicans, with improved
effects for bupivacaine and more powerful effects by
lidocaine and prilocaine (182). Local anesthetics
have also been proven to have fungal sporicidal
effects, the potency of which is agent and temperature-
dependent (174).

Discussion

General aspects
The first local anesthetic substance in regular clin-
ical use was the ester-type local anesthetic cocaine,
isolated by Niemann in 1860. The agent became
widely used to relieve pain until procaine was
synthesized by Alfred Einhorn in 1904, being the
dominating local anesthetic agent until its era was
ended by the synthesis of the first representative of
a new group of local anesthetic agents of the amide-
type, lidocaine, by Löfgren in 1943. Development of
new local anesthetic agents has since focused on the
potency of their nerve-blocking effects, duration of
action and safety and resulted in a substantial num-
ber of agents, many of which are currently in clinical
use. It is well established and well documented that
the nerve blocking effects of local anesthetics are
secondary to their interaction with the Naþ channels
thereby blocking nerve membrane excitability and
the generation of action potentials. However, accu-
mulating data suggest that local anesthetics also
affect Kþ and Ca2þ channels and act on intracellular
mechanisms at clinically relevant concentrations
(205). The wide range and variability of effects
induced by local anesthetics on many aspects of
activation and response by cells of the immune sys-
tem, as well as effects on other cells (e.g. microor-
ganisms, thrombocytes and erythrocytes), suggest a
more ‘global’ common pathway of action then sim-
ply interaction with Naþ channels. In his extensive
review of the mechanisms of action of local anes-
thetics, Philip Seeman (206), proposed that local
anesthetics ‘fluidize and disorder’ components
within the cell membrane and consequently

stimulate or inhibit membrane-associated enzymes
and proteins. Current knowledge lends support to
Seaman’s conclusions that the agents influence a
number of important aspects of membrane function,
by inducing reversible conformational and func-
tional alterations of the cell membrane. The detailed
mechanisms of action are not fully understood but
seem to involve interaction with membrane proteins
(189, 190) and lipids (207), thus interfering with the
function of neighboring ion channels (208), as well
as membrane-bound enzyme activity (209) and the
cytoskeleton of the cell (60), involved in migration,
exocytosis, and phagocytosis. The literature in this
area reveals great similarities with respect to the
anti-inflammatory and antimicrobial effects of
almost all local anesthetic agents, esters and amides
alike. Differences in action between individual
agents and between groups of agents are overwhel-
mingly related to differences in potency of action
rather than to the nature of action, and by suffi-
ciently increasing the concentration of a local anes-
thetic, the inhibitory effects will be achieved
independent of structure. As discussed above,
there is one exception to the rule and that is ropiva-
caine, which is the first enantiomerically pure local
anesthetic of the S-form. Ropivacaine stands out as
an agent with weak and, in some cases, complete
lack of anti-inflammatory properties (53, 58, 80, 210,
211) and antimicrobial actions (181—183) character-
istic of other local anesthetic agents. These differ-
ences have prompted researchers to question the
clinical potential of ropivacaine in the treatment of
inflammatory conditions (211) and point to the risk
of inadvertent intravascular or intrathecal infections
when using the agent (184, 185). The structural dif-
ferences between ropivacaine and other local anes-
thetic agents could perhaps shed some light on the
identity of the structures, which enable local anes-
thetics to exert their broad-spectrum anti-inflamma-
tory and antimicrobial effects.

Clinical implications
Inflammation forms an important part of the patho-
physiology of various diseases/conditions, be they
related to ischemia, trauma, immunologic disorders
or other mechanisms. Although the inflammatory
response is a prerequisite for survival in a hostile
surrounding, it may at times be exaggerated and
inflict additional damage to the affected tissues,
jeopardizing their recovery, and in some cases the
survival of the individual. Being able to fine-tune
the inflammatory reaction without undermining
the defensive and reparative functions and with a
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minimum of side-effects is highly desirable and could
partly be achieved by use of traditional anti-
inflammatory agents, e.g. NSAID and steroids. The
spectrum of untoward effects characteristic of the
latter agents has prompted a search for other anti-
inflammatory agents with fewer adverse effects.
Substantial evidence has accumulated to support the
broad anti-inflammatory properties of local anesthetics,
which in some cases may exceed in potency the actions
of traditional steroids (24). Although the bulk of data
regarding these effects is based on experimental in vitro
and in vivo studies, clinical studies are emerging to
support the potent anti-inflammatory effects of local
anesthetics in various clinical conditions.

Local anesthetics are extensively used for analge-
sic purposes by infiltration into the skin and sub-
cutaneous tissues as well as into joints and the
abdominal cavity during laparoscopic surgery. A
question which arises is to what extent they exert
their potent anti-inflammatory actions in association
with such procedures and whether this is beneficial
or deleterious to the patient. Experimental studies
have clearly shown that instillation of local anes-
thetics on the abdominal peritoneum can subdue
the pronounced inflammatory response to an irri-
tant (hydrochloric acid) (82) and that infiltration of a
local anesthetic in a surgical wound will inhibit the
migration of leukocytes into the wound and their
subsequent release of tissue toxic agents (36). After
administration of topical lidocaine in the surgical
wound of patients having undergone herniorraphy
(212), the authors were unable to detect adverse
effects on wound healing 6 months after surgery
(213). The studies showing that lidocaine accelerates
re-epithelialization (214) and improved wound heal-
ing (215) are indicative of a favorable effect. Another
interesting aspect is the inhibitory effect of most
local anesthetics on a wide range of bacterial strains
(149) (Table 1). This could perhaps explain the low
incidence of infections reported after administration
of local anesthetics into the epidural and spinal
cavities of patients.

Interstitial cystitis is a condition characterized by a
severe inflammatory reaction in the cystic wall of
undefined etiology, but frequently associated with
accumulation of mast cells in the detrusor muscle.
The symptoms are often severe and disabling, with
urinary frequency, urgency and pain (216). Repeated
daily instillations of 200 mg lidocaine into the bladder
during 2 weeks, was shown in a case report to induce
a long-lasting inhibition of edema, ulcerations and
mast cell infiltration of the bladder wall, along with
improved clinical symptoms (217). In two consecutive

studies investigating the effects of intrarectally admi-
nistered lidocaine gel 2% at a total dose of 800 mg
daily during several weeks in patients suffering from
ulcerative proctitis (218) or ulcerative colitis (219), the
authors were able to show remission of symptoms in
a great number of patients paralleled by improved
histological and gross appearance of the mucosa. In
an open study investigating the effect of 200 mg ropi-
vacaine gel given rectally twice daily during 2 weeks
to patients with distal ulcerative colitis, the author
reported significant improvement of mucosal inflam-
mation, and paradoxically, an increase in clinical
symptoms, such as the number of stools and blood
in stools (220). In a recent double-blind and placebo-
controlled clinical investigation of patients with distal
ulcerative colitis, investigators failed to show any sig-
nificant inhibition of eicosanoid release from rectal
dialysates and several other inflammatory mediators
from the rectal mucosa after a single rectal dose of
ropivacaine gel (211), which led the authors to ques-
tion the relevance of using ropivacaine in the treat-
ment of ulcerative colitis.

Major burn injuries are widely recognized to
engage most aspects of the immune system and to
trigger a pronounced and often exaggerated activa-
tion of the inflammatory cascade. Experimental in
vivo studies in the rat have shown that local anes-
thetics, both when administered topically(lidocaine-
prilocaine cream) and as systemic infusions of lido-
caine, induce significant inhibition of burn edema
(114—116) and improve blood flow in the burn injury
(221). These results were confirmed in latter studies
showing that application of a topical lidocaine-pri-
locaine cream (222) and intravenous lidocaine
infusions (40 mg/kg/min) (223) in experimental
superficial partial-thickness skin burns in human
volunteers, significantly reduced inflammation up
to 12 h post-burn as measured by non-invasive digi-
tal image color analysis. Because release of pain-
inducing inflammatory mediators is a major cause
for the severe pain often encountered in burn
patients, the above data could offer a rationale for
the potent analgesic effects reported in burn patients
receiving continuous intravenous infusions of lido-
caine at therapeutic doses (72). In a recent case
report relating to a patient with a major burn injury,
the authors showed that during the initial 48 h post-
burn when the patient received a lidocaine infusion,
he reported no pain and required no additional
analgesics, whereas after ceasing with the infusion,
analgesic requirements dramatically increased and
ranged from 200 to 600 mg morphine/day during
the subsequent 10 days (73).
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An estimated 95—98% of the population in the
western hemisphere is believed to have antibodies
against herpes simplex virus (HSV). Despite being
so widespread, we currently lack effective treatment
against this life-long infection affecting all categories
of the population. In a blinded cross-over study in
individuals with clinically manifest recurrent HSV-1
and HSV-2 infection, repeated topical application of
lidocaine-prilocaine cream in the prodromal stages
of the infection proved to abort 50% of infective
episodes and significantly reduce the duration of
eruptions and symptoms (200).

In conclusion, although a relatively limited num-
ber of inflammatory conditions/diseases have been
subject to treatment by local anesthetics in clinical
practice, our current understanding and future
insights into the mechanisms responsible for the
wide range of inhibitory effects by the agents on
the inflammatory cascade, may form a platform for
the creation of future drugs or treatments of
inflammation.
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